
A Hierarchical Approach to Context-Sensitive Interprocedural Alias Analysis

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 99-018

A Hierarchical Approach to Context-Sensitive Interprocedural Alias

Analysis

Bixia Zheng and Pen-chung Yew

April 21, 1999



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
21 APR 1999 2. REPORT TYPE 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
A Hierarchical Approach to Context-Sensitive Interprocedural Alias
Analysis 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Army Intelligence Center & Fort Huachuca,Fort Huachuca,AZ,85613 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

19 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 





A Hierarchical Approach to Context-Sensitive Interprocedural Alias
Analysis

Bixia Zheng Pen-Chung Yew
Dept. of Comp. Sci. and Eng., Univ. of Minnesota, Minneapolis, MN55455

Abstract

In this paper, we present a hierarchical flow-sensitive alias analysis algorithm which parameterizes the
context-sensitive level. Our approach groups the pointers in a program by their maximum possible derefer-
ence levels. It then orders the analysis of each pointer group by its pointer level, starting from the highest
level down to the lowest level. During the analysis of each pointer group, a bottom-up traversal of a program
call graph is followed by a top-down traversal with the necessary interprocedural information propagated
along the way. The interprocedural information is tagged with call-chains, which are the program call graph
paths, to achieve context-sensitivity.

We also provide empirical results to quantify how different context-sensitive levels affect the precision
and the efficiency of the algorithm. Our studies show that (1) the precision improvement achieved by in-
creasing the context-sensitive level of the analysis varies significantly depending on the programs analyzed;
(2) increasing the maximum call-chain length for a higher degree of context sensitivity may trigger the ex-
ponential complexity problem [15, 10, 23]. Thus, it is very desirable for an algorithm to allow users to
select an appropriate context-sensitive level that works best for a particular program. By parameterizing the
maximum call-chain length used in tagging the interprocedural information, our approach provides this type
of flexibility.

Keywords: interprocedural program analysis, alias analysis.

1 Introduction

In languages with general pointer usage, a pointer dereference may potentially access any memory location, thus
making it difficult to determine what is defined and used. Pointer alias analysis is a compile-time technique
that identifies the potential memory locations each pointerdereference may access. The accuracy of such
information directly affects many other analyses and optimizations.

Most of the recent published research works on alias analysis have focused on interprocedural techniques
[16, 17, 4, 7, 6, 24, 25, 13, 23, 14], because we may obtain veryimprecise results when limiting the analysis
within each subroutine. These analysis techniques can be classified into two broad categories:context-sensitive
and context-insensitive. A context-sensitive approach distinguishes a subroutine’s effect in different calling
contexts while a context-insensitive approach produces a single approximation for all of its calling contexts.
The context-sensitive approach, in general, can produce more precise alias information.

To facilitate context-sensitive analysis requires a mechanism to handle a subroutine differently in each of
its calling contexts. Emami et al. [7] re-analyzed a subroutine for each of its calling contexts. Wilson and
Lam’s partial transfer functionapproach [24, 23] groups the calling contexts by their inputalias patterns and
performs one analysis for each pattern. Another approach tags dataflow values withsequence tokens andalias
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assertions [21]. It computes a single transfer function for each subroutine by analyzing the subroutine only
once. However, all of the above context-sensitive approaches have an exponential time complexity because the
invocation graph grows exponentially with the size of a program [23] unless some effort is made to limit the
number of contexts in which a subroutine is analyzed.

In this paper, we propose a hierarchical alias analysis algorithm which parameterizes the context-sensitive
level. We also provide empirical results to quantify how different context-sensitive levels affect the precision
and the efficiency of the analysis. Our algorithm can avoid the exponential complexity problem, especially for
large programs, by limiting the context-sensitivity to a low level.

We first divide each alias analysis problem inton sub-problems wheren is the maximumpointer levelof
all pointers used in a program. Thelevelof a pointer is the maximum level of possible indirect accesses from
the pointer, e.g. the pointer level ofp2 in the definition “int ** p2 ”1 is two. We then calculate the values of
the pointers for each pointer level, starting from pointer leveln down to pointer level one. To achieve context-
sensitivity, we tag the dataflow values withcall-chains which are call graph paths describing how the values are
propagated into subroutines. By parameterizing the maximum call-chain length (maxcall chain length), we
can control the context-sensitive level of the algorithm. Our approach has the following features:� It enables the use of a syntax-directed flow-sensitive analysis technique which is generally more efficient

than its iterative counterpart [1].� It facilitates a combined analysis technique [25, 20, 26] which applies different algorithms to analyze
different data structure groups in order to improve the precision and the efficiency of the algorithm.� It can provide a spectrum of context-sensitive algorithms,ranging from a context-insensitive algorithm
to a full context-sensitive algorithm, by simply specifying maxcall chain lengthwith different values.� The algorithm can be extended to analyze non-pointer variables which have a pointer level equal to zero.

In the rest of this paper, we present the hierarchical flow-sensitive alias analysis algorithm and provide
empirical results to quantify how different context-sensitive levels affect the precision and efficiency of alias
analysis. Section 2 presents the main idea of our hierarchical approach. Section 3 discusses some major
concepts regarding memory objects and dataflow value representations. We illustrate the algorithm in Section
5 and present our experimental results in Section 6. Other related works are discussed in Section 7. Finally,
Section 8 draws conclusions.

2 The Hierarchical Alias Analysis

As mentioned in the previous section, thepointer levelof a variable is the maximum level of possible indirect
accesses from the variable. For simplicity, we refer to a variable with a pointer leveln as an n-level variable.
We also refer to a program whose pointer variables have a maximum pointer level ofn as an n-level program.

To provide some insight into our hierarchical approach, we first consider an example program in Figure 1. In
the example, it is difficult to determine the dataflow values generated or killed by the indirect assignments using
pointer dereferences�p2, �p1 and�q1. The side-effect of the indirect assignment “�p2 = &c” is determined
by the value ofp2 when the subroutine is called. On the other hand, the definitions generated by the statements
“�p1 = 1” and “�q1 = 1” are unknown until we determine the side-effect of the subroutine call. Hence, two
main issues need to be addressed:

1We use the C language to give examples in this paper.
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� A subroutine’s side-effect may depend on the values of some pointers when the subroutine is called.� The program segment following a subroutine call may not be analyzed until the side-effect of the subrou-
tine is known.

The first constraint above makes it impossible to use a singlebottom-up pass over the call graph to calculate
all pointer values while the second one prevents a single top-down pass. Thus, supplementing the interprocedu-
ral analysis with the intraprocedural analysis is necessary. Figure 2(a) graphically illustrates this bi-directional
dependency in a context-sensitive interprocedural alias analysis.

main() {

s1         p2 = &p1;

s3        *p1 = 1;

s4         *q1 = 1;

int a, b, c, *p1, *q1, **p2;

s2         sub(); 

s6        p1 = &a;

s7        q1 = &b;       

s8       *p2 = &c; 

}s9

void  sub() {

s5  }     

Figure 1: An example program.

However, this dependency cycle can be eliminated if we groupthe variables by their pointer levels and
represent each group with a node in the proceduresmain andsub. As shown in Figure 2(b), the value for the
2-level variablep2 is propagated frommain to sub and determines the value of the expression�p2. It also
determinessub’s side-effect on the 1-level variablesp1 andq1. The new values ofp1 andq1 propagate fromsub back tomain and determinemain’s side effect on 0-level variablesa, b andc.

(a) (b)

main: sub:

p1, q1, *p2 main sub

p2 *p2

p1, q1
a, b, c

*p1
*q1p2,*p1,* q1,

  a, b, c

Figure 2: The dependency betweenmain andsub in Figure 1. The arrow pointing from a node A to another
node B indicates that the values of the expressions in A determine the values of the expressions in B.

This suggests a two-step alias analysis algorithm to the example program: first, collect the values for the
variablep2 and show that the statements8 can be treated as “p1 = &c”; then, collect the values for the
variablesp1 andq1 so that later analyses can treat “�p1 = 1” as “c = 1”, and “�q1 = 1” as “b = 1”. Our
hierarchical alias analysis uses a similar approach. We first divide the alias analysis problem for an n-level
program inton subproblems. Theith subproblem analyzes only the assignments to the i-level variables in the
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program and determines the memory locations accessed by dereferencing these i-level variables. We then solve
all subproblems by starting from thenth subproblem down to the first subproblem so that by the time we need
to solve the subproblem of a certain pointer level, the higher level pointer values have already been obtained.

3 Major Concepts

This section describes the major concepts used in our hierarchical alias analysis. We first introduce our memory
object representation. Then we present our definitions ofpointer levelandpredicate. Finally, we describe our
dataflow value representation.

3.1 Memory Object

We useMemory Objects (MemObj)to model run-time memory locations that store information.There are
two kinds of MemObjs:static anddynamic. A static MemObj represents the memory location created fora
compile-time variable while a dynamic MemObj represents all the memory objects generated by a memory
allocation statement (such as amalloc statement) at run-time. If a memory allocation statement allocates a
structure, we create several dynamic MemObjs, one for each field of the structure.

We create one MemObj for a scalar variable, and one MemObj to represent all the elements in an array. We
treat a structure or a union variable as an aggregate of MemObjs, each of which corresponds to a field in the
structure or the union. The difference between a structure variable and a union variable is that the MemObjs in
a union variable are overlapped while those in a structure variable are not. This MemObj representation allows
us to distinguish between different fields in a structure or aunion and identify the dynamic memory objects by
their allocation statements. However, we do not distinguish different elements in an array.

We use MemObjs instead of variables in our dataflow value representation for two main reasons: (1) a
dynamically allocated memory object does not correspond toany variable; and (2) a structure or a union variable
may correspond to several memory objects.

3.2 Pointer Level

Each MemObj has atypeattribute. The type for a static MemObj is the type of the corresponding variable, and
the type for a dynamic MemObj is derived from the type used in the type-cast operator of the memory allocation
statement. For instance, we create an array MemObj of type T for memory object allocated by statement “(T *)
malloc(size)”.

Thepointer levelof a type corresponds to the maximum level of possible dereferences from a MemObj of
that type. The pointer level of the variableps in the definition “struct Sfint � � f ;g �ps ”, for example, is three
becauseps can have up to three levels of dereferences (� � ((�ps):f)). The pointer level of a non-recursive type
is calculated as follows:� Thepointer levelof a scalar type is 0.� Thepointer levelof a type “T *” is 1 + x wherex is thepointer levelof the type “T”.� Thepointer levelof a structure or a union equals to the maximumpointer levelof its field types.

In the absence of recursive data structures, a dereference from an n-level MemObj may access one or more
MemObjs with a pointer level less thann. Our hierarchical approach is based on this observation. Wewill
discuss how our algorithm conservatively handles recursive data structures in Section 4.5.
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3.3 Predicate

A predicateis attached to a dataflow value to represent the condition in which the value is valid. A predicate
can be eithernull or the disjunction of a group ofcall-chains: CH1 _ CH2 _ ::: _ CHn. When the predicate
is null, the corresponding dataflow value is not interprocedurallyrelated. Otherwise, the group of call-chains
describe all the calling conditions under which the dataflowvalue is passed into the current subroutine.

A call-chain is an order list of(s, c)pairs, represented as(s1; c1)� > (s2; c2):::� > (sn; cn). Each(s, c)
pair is associated to a subroutine call site, wheres is the strongly connected component (SCC) in a program call
graph that contains the callee, andc is an ID distinguishing among different calls to the same SCC. Usually,c
is a non-negative integer; different call sites to the same SCC have different values ofc. However, to avoid an
unlimited call-chain length, we setc to�1 for any call site to a recursive SCC.

A call-chain represents how a dataflow value is passed into a subroutine. For instance, a call-chain(s1;c1)� >(s2;c2)
is attached to a pointer value which is first passed into a subroutine in SCCs1 via a call site with IDc1, then
passed into a subroutine in SCCs2 via a call site with IDc2.
3.4 Representing Dataflow Values

A definition to a MemObj is a statement that assigns or may assign a value tothe MemObj. A definition is
represented asDefinition(s; i;m; v; dp), wheres is the statement that generates the definition,i is a unique
ID for the definition,m is the MemObj being defined,v are thevalues of the object, anddp is the predicate
that describes the calling conditions in which the definition is valid. The definition ID is necessary because a
statement may generate more than one definition in the presence of pointer dereferences. The predicatedp is
also referred to as adefined-predicate.

We useReach(i; s; rp) to represent a definition with an IDi which reaches a statements under the call-
ing conditions described by a predicaterp. The predicaterp is also referred to as areach-predicate. If we
haveReach(i; s; rp), and the definition with an IDi is defined asDefinition(s0; i;m; v; dp), then we have a
dataflow valueObjectV alue(m; v; rp ^ dp) at the statements. This dataflow value means at the statements,
a MemObjm has the values represented byv under the calling conditions described byrp ^ dp.

A transfer function TF(sub, n)describes all then-level MemObjs referenced or modified in the subroutinesub. In the transfer functionTF(sub, n), aMemObjreferenced insub is represented by a pair(m; p), wherem is
the MemObj referenced andp is a predicate describing the calling conditions in which the object is referenced.
Similarly, a MemObj modified insub is represented as(m; (v1; p); (v2; p); :::). A (vi; p) pair represents both a
possible output value of the MemObjm and the calling conditions in which the value is valid.

4 The Hierarchical Algorithm

In this section, we describe our hierarchical algorithm shown in Figure 3.

4.1 Pre-analysis

In the pre-analysis phase, we traverse the program once to collect the necessary information for later analysis.
The collected information includes the maximum pointer level for each subroutine, the maximum pointer level
for the whole program, and an indication of whether the program has any recursive data structure or not. This
information is used to divide the original problem into subproblems. We also gather the subroutines and the
variables whose addresses are assigned to pointers. The addressed variables are used to handle unknown points-
to values as described in Section 4.5 while the addressed subroutines are used to determine the potential callees
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pre-analysis();

for i = maximum-pointer-level downto 1

                      assume sub is the only subroutine in scc;

             else //scc is a call graph cycle
                      for each subroutine sub in scc

                       change = true;
                       while (change)
                              change = false;
                              for each subroutine sub in scc

               if (scc is  not a call graph cycle)

       //bottom-up:

        //top-down:

                                     compute the reaching definitions for i-level MemObjs;

       for each SCC scc in topological order 

                   while (change)

                     for each subroutine in scc
                             for each call statement to a callee-subroutine sub which is also in scc

                                               propagate the value of the MemObj from the current procedure(caller) to sub(callee);

                      compute the reaching definitions for i-level MemObjs;

                              initialize TF(sub, i) = {};

                                     if the new TF(sub, i) is different from the old one, set change = true.

             if (scc is a call graph cycle)  //propagate values for calls within the same SCC
                   change = true;

                           change = false;

                                               if the new values of MemObj are different  from the old ones
                                                     change = true;

handle recursive data structures;
//analysis;

                     traverse each statement in the subroutine 
               for each subroutine in scc

                                         propagate the values of the MemObj from the current procedure(caller) to sub(callee);

                      summarize the subroutine’s effect on i-level MemObjs in TF(sub,i).

                                     summarize the subroutine’s effect on i-level MemObjs in TF(sub, i);

                                      for each MemObj referenced in TF(sub, i)

                                   for each MemObj referenced in TF(sub, i)

                                    annotate the dereference with the (i-1)-level MemObjs
                                    that the i-level MemObj may points-to.

       for each SCC scc in a reversed topological order   

                            if encounter a call to subroutine sub  and sub is not in scc

                              if encounter a dereference from a i-level MemObj

Figure 3: An overview of the hierarchical algorithm.

of the indirect calls via function pointers. During the pre-analysis phase, we also construct a program call graph,
compute its SCCs, and assign a(s; c) pair to each subroutine call (Section 3.3).

4.2 Bottom-up analysis

To calculate the reaching definitions for all i-level MemObjs and the transfer functionTF (sub; i) for each
subroutinesub, a bottom-up analysis for pointer leveli traverses the SCCs of the program call graph in a
reversed topological order (see Figure 3).

4.2.1 Handling Assignments

An assignment assigns a value to a MemObj. There are two kindsof assignments: direct and indirect. An
assignment with a variable on its left-hand-side(LHS) is a direct assignment. It generates a definition withnull
as its defined-predicate, which means the definition is generated regardless of how the subroutine is entered.
On the other hand, an assignment with a pointer dereference on its LHS is an indirect assignment. An indirect
assignment generates one or more definitions depending on the number of points-to values of the pointer. The
defined-predicate for a definition generated by this indirect assignment determines the conditions in which the
pointer points to the MemObj being defined.
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Generating a new definition affects the current reaching definitions in two ways. First, a definition generated
by an assignment reaches its immediate next statement with areach-predicatenull. Thisnull reach-predicate
means that under the condition that the definition is generated, the definition definitely reaches its immediate
next statement. Second, generating a new definition maykill other reaching definitions by changing their reach-
predicates. In general, if we haveDefinition(s0; j;m; v; dp) andReach(i; s0; rp) at a statements0 where both
definition i and definitionj define the same MemObj, then we haveReach(i; s0 + 1; rp ^ (:dp)) at the next
statements0 + 1. If the value ofrp ^ (:dp) is false, definition i is completely killed. Otherwise, it is
conditionally killed. A flow-sensitive algorithm considers both of the above two effects while a flow-insensitive
algorithm does not consider thekilling effect. Therefore, by turning on or off the abovekilling effect, our
algorithm can be either flow-sensitive or flow-insensitive.

4.2.2 Backward Propagating Dataflow Values

In order to update the current reaching definitions during the bottom-up analysis, we also consider the modifi-
cation side effect of the callee subroutine. Because we traverse the call graph in its reversed call order, when
we encounter a call to subroutinesub, its transfer functionTF (sub; i) has already been computed and can be
applied to determine the call statement’s effect on the current dataflow value.

Assumesubmodifies a MemObjmwith a valuev and a predicatep, represented byObjectV alue(m; v; p).
The operatorReturnable compares the predicatep with the(s; c) pair associated with the call site to determine
whether the dataflow value can be propagated back to the call site or not. IfObjectV alue(m; v; p) can be
propagated back to a call site with(s; c), the (s; c) pair should be detached from all the call-chains in the
predicatep. The operatorDetach(p; (s; c)) calculates the new predicate for the dataflow value.

WhenObjectV alue(m; v; p) is propagated back to the call site with(s; c), a definitionDefinition (s0; i;m; v;Detach(p; (s; c))) is generated, wheres0 is the call statement, andi is a new definition ID. The new definition
will reach the immediate next statement. This is represented by haveReach(i; s0 + 1; null).
4.2.3 Syntax-Directed Method

A syntax-directed flow-sensitive analysis algorithm uses dataflow equations for regular control structures,
thus avoiding the need to iteratively analyze control structures with backward jumps to calculate a fix-point
solution[1]. To apply this syntax-directed method, two criteria must be met: (1) the definitions generated by
any statement (gen-set) and the definitions killed by any statement (kill-set) are independent of the current
dataflow values; (2) the program being analyzed cannot have acontrol structure other than sequential, branch(if
or switch), and loop.

Normally, a syntax-directed method cannot be directly applied to programs with indirect assignments using
pointer dereferences because both thegen-setand thekill-set for any indirect assignment are not constants
but rather depend on the current reaching definitions. More specifically, thegen-setand thekill-set of the i-
level MemObjs depend on the reaching definitions of the (i+1)-level MemObjs. However, in our hierarchical
approach, by the time we analyze the i-level MemObjs, the reaching definitions of the (i+1)-level MemObjs
have already been obtained, and thegen-setand thekill-set of the i-level MemObjs are independent of the
reaching definitions of the i-level MemObjs. This is one of the reasons that we can use a syntax-directed
method.

To meet the second criterion, we normalize irregular control-flow where-ever possible and marks the pro-
gram segments containing irregular control structures which cannot be normalized. We use a syntax-direct
method to calculate flow-sensitive dataflow values for regular control structures. On the other hand, we calcu-
late flow-insensitive dataflow values for program segments with irregular control structures by turning off the
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killing effect of any assignments within the segments (Section 4.2.1). Thus, we avoid the need to iteratively
analyze each subroutine to calculate a fix-point solution.

4.3 Top-down analysis

The top-down analysis for a pointer leveli, as shown in Figure 3, traverses the SCCs in their topological order.
It propagates the values of the i-level MemObjs from the callers to the callees and annotates any dereference
from an i-level MemObj with the (i-1)-level MemObjs it may potentially access.

4.3.1 Forward Propagating Dataflow Values

We check a subroutinesub’s transfer functionTF (sub; i) when we encounter a call to it during the top-down
analysis. If a MemObj is referenced in the subroutine, we propagate the values of the MemObj from the caller
to the callee.

When a dataflow valueObjectV alue(m; v; p) is propagated to a subroutine via a call site with(s; c), the(s; c) pair is appended to the end of the call-chains in the predicate p. This is to denote that the information is
passed one step further along the call graph. The operatorAppend(p; (s; c)) calculates the new predicate for a
dataflow value propagated to a subroutine.

If ObjectV alue(m; v; p) is propagated into a subroutine via a call site with a(s; c) pair, we generateDefinition (se; i;m; v; Append(p; (s; c))) andReach(se; i; null), assumingse is the entry of the subroutine.
Because we traverse the procedures according to their call order, by the time we start to analyze a subroutine,
the input values of all its referenced i-level MemObjs are available.

4.3.2 Evaluating Pointer Dereferences

The top-down analysis also annotates the memory objects which can be potentially accessed by a dereference
from an i-level MemObj. The input values along with the reaching definitions of the i-level MemObjs can deter-
mine an i-level MemObj’s value at a certain statement. If we assume that we haveObjectV alue(m;Address(x); p)
at a statements, then a dereference expression�m ats can be annotated withReference(x; p). This indicates
that the dereference expression�m will access the MemObjx under the predicatep.

4.4 Parameterizing the Context-Sensitive Approach

We set a parameter calledmax call chain length to limit the length of the call-chains in the predicates tagging
the dataflow values. Without any limitation, a call-chain ina predicate can be as long as the depth of the program
call graph. With the limit set by this parameter, the predicate used to tag the pointer values can only contain
the most recentmax call chain length call sites in the call-chain. This may cause a merge of the dataflow
information propagated beyond the most recentmax call chain length call sites. Thus, controlling the value
of max call chain length can control the context-sensitivity of the algorithm.

The parametermax call chain length is also directly related to the complexity of the algorithm.Let l
denote themax call chain length used in tagging the dataflow value, andc denote the maximum number
of call sites for a subroutine. There can be up tocl call-chains in a predicate used in tagging the dataflow
values for the subroutine. The conjunction operator (^) is the most complicated operator among the three
predicate operators (negative:, disjunction_ and conjunction̂ ) used in dataflow value calculation and has the
complexity ofO(c2l), or the square of the number of call-chains. Without any predicate on the dataflow values,
the operations togenerate or kill a definition have the complexity ofO(1). In the presence of predicates, these
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two operations need to handle predicate calculation and have the complexity ofO(c2l). The overall complexity
of our algorithm is, therefore,O(ntc2l), wheren is the maximum pointer level of the program andt is the time
to compute the reaching definition for a program with single level pointer. Pande et al. [18] showed thatt is
polynomial. Thus, the exponential complexity of the algorithm lies in the value ofmax call chain length.

There is a trade-off between the complexity and the precision of the algorithm. An algorithm with a larger
value ofmax call chain length may provide more precise information at the cost of more analysis time.
Thus, the parametermax call chain length in our approach allows users to select a prudent context-sensitive
level that works best for a particular program.

4.5 Handling Complicated Language Features

For simplicity, our discussion above ignores some problematic language features. We now consider some of
those features and modify our algorithm accordingly in order to handle real-world programs.

Recursive data structures pose some difficulties to our hierarchical approach because dereferencing a pointer
of a recursive data structure may not “lower” its pointer level. To overcome this difficulty, we analyze all recur-
sive data structures before the analysis of other MemObjs asshown in Figure 3. Theoretically, we can incor-
porate any existing recursive data structure analysis algorithm into our approach since recursive data structures
are usually handled separately. However, in our current implementation, we first annotate any indirect write to
recursive data structures using pointer dereference, suchas “p->next = a-value” wherep is defined as “struct Sf struct S *next;g *p”, with all the addressed MemObjs which have the same type as the dereference expression
(p->next). Then, we use the bottom-up and top-down analysis algorithms described in Figure 3 to analyze the
recursive data structures.

Type-casting may also be a problem because we order the analysis of MemObjs via their defined types. We
identify three categories of type-casting and their corresponding handling strategies:� Type-casting a pointer value to a lower-level pointer violates our assumption that dereferencing an n-

level MemObj may access one or more (n-1)-level MemObjs. As shown in Figure 4(a), dereferencing a
1-level MemObjp1 accesses a 2-level MemObjp2. The analysis for pointer level two may result in a
wrong value forp2 because it ignores the fact that the statements2 modifiesp2. To avoid this error, the
pre-analysis phase sets thetype-cast-to-lower-pointer-levelflag ofp2 when it encounters the type-casting
expression in the statements2. Later analyses conservatively assume that a dereference from a MemObj
with thetype-cast-to-lower-pointer-levelflag set may access any addressed MemObjs.� Type-casting a non-pointer value to a pointer, as shown in Figure 4(b), is considered to be constructing
a pointer value from scratch. We assume a later dereference from the pointer may potentially access any
addressed memory object.� Figure 4(c) shows that if we first type-cast a pointer value ofone structure type to a pointer of another
structure type, then dereferencing the pointer (ps2->c[i] ) may access an unknown portion of a structure
(s1). In this case, we conservatively assume the dereference may touch all fields in the structure.

User-defined memory-allocation subroutines in a program make it difficult to determine the type of the
dynamically allocated memory objects. To overcome this difficulty, we create oneheap objectinstead of using
the dynamic memory object naming scheme described in Section 3.1 for any program containing user-defined
memory allocation subroutines.

The non-local control flow caused by setjmp/longjmp can be handled as follows: treat the longjmp statement
as a return statement; then model a general program piece with setjmp in Figure 4(d) as the program piece in
Figure 4(e). Our analysis also assumes signal handlers in a program do not affect global pointer values.
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p1= (int*)c;
int c, *p1;

s1: p1 = (int *) (&p2);
s2: *p1 = ...; //modify p2

       int *p1, **p2;

return_value = setjmp(buffer);
L1:
    ... other statements ...
    sub();
    if (a-unknown-condition)
        goto L1;

struct S1 {
   int a, b;
} s1;
struct S2 {
    char c[8];
}*ps2;

ps2 = (struct S2 *) (&s1);
... = ps2->c[i];  

 
          
           return_value = setjmp(buffer);
           ... other statements...
           sub(); //sub has a long jmp statement

(a) (d)

(b)                                                 (c)                                                               (e)

Figure 4: Handling Some Complicated Language Features

5 Experiments

We implemented the above algorithm in our Agassiz Compiler [11]. The implementation of both the compiler
kernel and the alias analysis algorithm requires an object-oriented programming style which avoids dangling
pointers and memory leakage. Unlike other approaches whichdo not take into account such considerations,
this approach tends to increase memory usage and slow down the compiler.

To explore the trade-offs between the efficiency and the precision of alias analysis, we studied three flow-
sensitive algorithms with different levels of context-sensitivity: (1) context-insensitive (max call chain length=0); (2) context-sensitive withmax call chain length = 1, which distinguishes the calling contexts by the
most recent call site in the call-chains; (3) context-sensitive with an unlimitedmax call chain length.

For each of the above algorithms, we measured its speed and its memory usage. We also calculated the
average number of target objects(AvgNumTarget) for indirect reads and indirect writes to measure the preci-
sion of the algorithms. Our results were collected on a 200 MHz Intel Pentium Pro machine with 256MB main
memory and 768MB swap space running Linux 2.1.132.

5.1 Benchmark Programs

Our benchmark suite contained a total of 14 programs: four from SPEC95, six from SPEC92, and four other
pointer intensive programs [2]. Table 1 describes some important characteristics of the benchmark programs.
These program characteristics are collected after the control-flow normalization phase, which may duplicate
codes. As can be seen, the third column of the table lists the number of lines in each program while the fourth
column reports the number of user-defined functions (including main) used in the program. The number of
direct calls to user defined functions and the number of indirect calls via function pointers are shown in the
next two columns. The following two columns present the number of recursive functions, and whether the
programs contain recursive data structures or not. The maximum pointer level of the programs, which are also
the number of subproblems for the analysis of the non-recursive data structures of the programs, are shown in
the next-to-last column. The last column reports whether the programs contain irregular control flow or not.

5.2 Results and Discussion

Table 2 shows the speed and the memory usage for the three algorithms. The analysis speed in the third and
fourth columns shows the analysis time(in seconds) and the number of lines analyzed by the algorithms per
second. The fifth column gives the maximum memory used by the analysis, excluding the memory used by the
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Bench- Source # lines # # call # call # rec. rec. max irr.
mark u.d.f. to u.d.f. via f.p. func d.s. p.l. cont.
alvinn spec92 cfp 272 8 7 0 0 no 2 no

anagram Austin [2] 646 15 22 0 1 no 3 no
ks Austin [2] 782 13 16 0 0 yes 2 no

026.compress spec92 cint 1503 14 83 0 0 no 2 no
129.compress spec95 cint 1924 18 38 0 0 no 2 no

ft Austin [2] 2157 27 47 0 0 yes 2 no
eqntott spec92 cint 3457 59 543 11 9 yes 3 no
yacr2 Austin [2] 3979 51 156 0 5 no 2 no
ear spec92 cfp 5239 68 140 0 1 no 3 no
sc spec92 cint 8455 147 1008 2 20 yes 3 no

espresso spec92 cint 14838 314 1621 15 27 yes 3 no
m88ksim spec95 cint 19915 239 1158 3 3 yes 4 no

go spec95 cint 29246 372 2099 0 1 no 3 no
ijpeg spec95 cint 31249 271 391 446 28 yes 5 no

Table 1: Benchmark program characteristics (u.d.f.=user-defined-function; f.p.=function-pointer;
rec.=recursive; d.s.=data structure; p.l.=pointer-level; irr.cont=irregular-control-flow;)

program intermediate representation(IR). The last columnshows the ratio of the maximum memory used by the
analysis to the memory used by IR. Presenting the memory usage this way allows us to distinguish the memory
used by the compiler data structures from the memory used by the analysis.

As expected, Table 2 reveals that larger programs do not necessarily require more analysis time. Programgo, for instance, is about twice as large as programespresso (Table 1) but required an analysis time less than
1/11 that of programespresso. The fact that larger programs do not always require more analysis time can also
be seen from the wide range of numbers in the fourth column. For example, the context-insensitive algorithm
achieved 121� 1309 lines per second for 11 programs but only 18 lines per second for programespresso. The
difference in the numbers of lines per second suggests that other factors, such as program structure complexity
and analysis precision, may affect analysis time.

Table 2 also reveals that some programs are very sensitive tothe exponential complexity problem while the
other programs are not. For example,the context-sensitiveanalysis withmax call chain length= 5 for pro-
gramespresso was approximately five times slower than the context-insensitive analysis of the program. Also,
the memory used by the context-sensitive analysis withmax call chain length= 5 for this program was more
than three times that used by the context-insensitive analysis of the program. Moreover, the complexity for the
analysis of programespresso grew so rapidly that we were not able to complete its unlimited context-sensitive
analysis and collect the result within twenty hours. On the other hand, increasing themax call chain length
did not increase the time and memory usage for the analysis ofprogramsalvinn, anagram, ks, yacr2, ear,
andgo. In general, a program with most of its subroutines having than one call site and many pointer values
propagated along deep call graph paths tends to be sensitiveto the exponential complexity problem. Further-
more, small programs usually do not suffer from the exponential complexity problem.

Table 3 shows the average number of target objects(AvgNumTarget) for indirect reads and indirect writes,
as well as the total number of indirect reads and indirect writes. At run time, a pointer dereference should
access at least one memory object. Thus, one is the lower bound for anAvgNumTarget. An analysis with anAvgNumTarget close to one means that the algorithm is precise. However, a largerAvgNumTarget may
indicate either a reduced precision due to the algorithm, orthat the pointer dereferences are actually accessing
more than one memory object on average at run time.

As can be seen from Table 3, increasing the level of context-sensitivity resulted in precision improvement on
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Bench- Algo- Speed Memory Usage(KB)
mark rithm time (sec.) lines per sec. ana. max ana : ir
alvinn 1 0.90 302 1100 0.25

2 0.90 302 1108 0.25
3 0.90 302 1108 0.25

anagram 1 1.40 461 1324 0.28
2 1.41 458 1336 0.28
3 1.41 458 1340 0.28

ks 1 2.18 359 1588 0.33
2 2.21 354 1624 0.34
3 2.21 354 1624 0.34

026.compress 1 2.98 504 1648 0.30
2 3.21 468 2288 0.42
3 3.67 410 2288 0.42

129.compress 1 1.47 1309 1328 0.19
2 1.50 1283 7344 0.19
3 1.53 1283 8496 0.21

ft 1 2.34 922 1648 0.28
2 2.35 918 1672 0.29
3 2.38 906 1680 0.29

eqntott 1 38.72 89 7132 0.74
2 60.49 57 7688 0.80
3 67.46 51 8296 0.86

yacr2 1 5.70 698 2432 0.33
2 5.92 672 2604 0.35
3 6.19 643 2796 0.37

ear 1 5.26 996 2784 0.36
2 5.32 983 2900 0.38
3 5.34 981 2968 0.39

sc 1 69.62 121 11040 0.55
2 73.69 115 11040 0.55
3 110.03 77 15880 0.79

espresso 1 840.61 18 67332 2.00
2 1668.33 9 138292 4.113� 4179.14 4 216656 6.43

m88ksim 1 295.98 67 44808 0.62
2 353.30 56 48452 0.673� 1203.58 17 62036 0.86

go 1 75.11 389 15404 0.36
2 75.72 386 16252 0.38
3 76.75 381 16260 0.38

ijpeg 1 145.41 214 15508 0.30
2 167.31 187 15508 0.30
3 1018.33 31 25680 0.49

Table 2: The speed and the maximum memory usage for the three algorithms in Section 5 (3� : the algo-
rithm with max call chain length=5, we were unable to collect the result for the algorithm with unlimited
max call chain length because of the huge invocation graph).
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Bench- Algo- indirect reads indirect writes
mark rithm AvgNumTarget tot AvgNumTarget tot
alvinn 1 1.00 34 1.00 9

2 1.00 1.00
3 1.00 1.00

anagram 1 1.39 23 1.00 9
2 1.39 1.00
3 1.39 1.00

ks 1 2.08 113 1.00 2
2 2.08 1.00
3 2.08 1.00

026.compress 1 1.00 100 1.00 32
2 1.00 1.00
3 1.00 1.00

129.compress 1 1.13 30 1.06 32
2 1.13 1.06
3 1.00 1.00

ft 1 1.00 151 1.00 5
2 1.00 1.00
3 1.00 1.00

eqntott 1 1.26 1243 1.19 539
2 1.25 1.18
3 1.25 1.18

yacr2 1 1.25 393 1.89 81
2 1.23 1.65
3 1.23 1.65

ear 1 4.69 181 2.05 96
2 3.87 1.68
3 3.87 1.68

sc 1 1.31 1828 1.55 127
2 1.30 1.38
3 1.30 1.38

espresso 1 22.66 4322 31.00 1242
2 22.08 28.963� 21.62 28.28

m88ksim 1 7.36 1792 5.77 308
2 6.11 3.153� 6.10 2.98

go 1 17.10 78 9.73 38
2 1.02 1.06
3 1.00 1.00

ijpeg 1 1.43 3235 1.36 1275
2 1.37 1.30
3 1.26 1.22

Table 3: The average number of indirect read/write targets for the three algorithms in Section 5 and the total
number of indirect reads and writes for each program.
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Scheme Algorithm Time ana. memory AvgNumTarget AvgNumTarget
(sec.) (KB) for indirect reads for indirect writes

scheme-1 1 840.61 67332 22.40 29.89
2 1668.33 138292 21.81 28.963� 4179.14 216656 21.37 28.29

scheme-2 1 193.99 24864 2.17 2.10
2 250.85 29712 2.13 2.023� 467.28 45228 2.09 1.97

Table 4: Comparing two schemes in modeling the dynamic memory objects for the analysis of programespresso. (scheme-1: the scheme described in Section 3.1. scheme-2:create one heap MemObj.)

nine out of 14 programs. However, the degree of improvement varied significantly depending on the programs
analyzed. The two algorithms withmax call chain length>= 1 achieved anAvgNumTarget close to one
for go, a significant improvement over the context-insensitive version. This is because most of the pointer
values in the program are passed only one step along the call graph. However, for the other five programs,alvinn, anagram, ks , 026:compress andft, the three algorithms achieved the same precision. This suggests
that either most of the dereferenced pointers are not interprocedurally related, or most of their subroutines are
called with the same points-to values, or that the reduced precision is caused by the conservativeness in handling
recursive data structures (programsks andft use recursive data structures extensively). For the remaining eight
programs, increasing the level of context-sensitivity only slightly improved the precision of the analysis.

Thus, considering both the cost, including the analysis time and the peak memory usage, and the precision
of the algorithms, the benefit of increasing themax call chain length varies depending on the programs ana-
lyzed. For the programs where exponential cost is not likelya problem, increasing themax call chain length
to achieve the best precision result is a good choice. On the other hand, limiting themax call chain length
to a small number is a practical way to efficiently handle the programs that are sensitive to the exponential
growth without sacrificing very much precision. Our approach allows users to select a prudent value of themax call chain length which works best for each particular program. A similar approach has been used in
most compilers for varying levels of optimization.

Table 4 compares two schemes in modeling the dynamic memory objects for the analysis of programespresso. The first scheme is the one used in our previous algorithm, which creates one or several dynamic
MemObjs for each memory allocation statement (Section 3.1). The second scheme, on the other hand, creates
one heap object for all the memory allocation statements. Asrevealed by the table, replacing the first dynamic
memory object modeling scheme with the second one speeded upthe context-insensitive algorithm by more
than four times and the most context-sensitive algorithm bynine times. Memory usage was also significantly
reduced in the three algorithms with the second scheme. Because the second scheme collapses all dynamic
MemObjs into one heap object, the difference in the AgvNumTarget for the context-insensitive algorithm in
both schemes suggests that: (1) approximately 21 out of the 22.4 AgvNumTargets for indirect reads in the
first scheme are dynamic memory objects; (2) approximately 28 out of the 29.89 AgvNumTargets for indirect
writes in the first scheme are dynamic memory objects. A similar situation was also found in the remaining
two context-sensitive algorithms. Our other studies have shown that most of the dynamic objects in programespresso are related to recursive data structures. This suggests that if an algorithm cannot precisely analyze
recursive data structures, using the first dynamic memory object modeling scheme may complicate the analysis.
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6 Other Related Work

We use a syntax-directed flow-sensitive algorithm to analyze each subroutine while most of the previous flow-
sensitive alias analysis methods use an iterative algorithm. A syntax-directed flow-sensitive algorithm is gen-
erally considered to be more efficient than its iterative counterpart. However, whether the extra effort results in
real saving in time has not been firmly established.

Hind et al. [14] presented another approach to improve the efficiency of an iterative flow-sensitive alias
analysis algorithm. They provided empirical results to demonstrate the effectiveness of four techniques (shared
alias sets, a working list, a sorted working list, and forward binding filters) in speeding up the iterative algorithm.
However, a direct comparison of the speed of their algorithmwith the speed of our flow-sensitive context-
insensitive algorithm is difficult for four main reasons: (1) Our machine environment is different from theirs.
(2) Our context-insensitive algorithm is implemented in a framework which can result in context-sensitive
algorithms. The extra data structures and programs to support context-sensitivity may slow down the context-
insensitive algorithm. (3) Our pointer analysis is implemented as an integral part of a scalar dataflow analysis. It
not only collects points-to information for later non-pointer analysis, but also collects definition-use information
for pointer variables. Their algorithm, on the other hand, only calculates points-to information. (4) Their
algorithm is based on a sparse evaluation graph [5, 3] with only the pointer-related assignments and function
calls in a program. Ignoring the non-pointer-related assignments this way can simplify the control-flow graph,
thereby speeding up the analysis.

Both Zhang et al. [25, 26] and Ruf [20] presented a program decomposition alias analysis algorithm. They
first divided object names into equivalent classes using pointer-related assignments. They then used the “pre-
fix” relation 2 between the object names to draw dependency edges between equivalent classes. Finally, they
constructed the subproblems out of the above dependency graph in different manners: Zhang et al. viewed each
weakly connected component of the graph as a subproblem while Ruf turned the graph into a DAG by col-
lapsing each strong connected component into one node and treated each node in the DAG as one subproblem.
Compared to our approach, the above two approaches usually result in finer subproblems, thus resulting in a
greater reduction in memory usage. However, it remains to beseen that finer subproblems will result in a faster
analysis of the original problem.

Wilson and Lam’spartial transfer function (PTF)approach [24, 23] also provides the flexibility to adjust
the precision and the efficiency of their analysis. They provided four different criteria to decide whether to re-
analyze a subroutine or to re-use an existing PTF. This leadsto four variations of their algorithm with different
levels of context-sensitivity. Unlike their approach, ourapproach controls the analysis via the number of the
most recent call sites in the call-chains tagging the data flow values. Our approach can result in a spectrum
of algorithms with unified semantics while their algorithm identifies only four variations. This may not be a
distinctive advantage but certainly indicates a major difference in our approach.

In his studies of the precision of context-insensitive and context-sensitive algorithms, Ruf concluded that
a context-sensitive algorithm did not provide any precision improvement over the context-insensitive version
when considering only the relevant points-to information for the pointer dereferences in the programs [19].
He also suggested that his conclusion might be limited to hisbenchmark suite. On the other hand, our re-
sults showed that for nine out of 14 programs, the most context-sensitive algorithm demonstrated precision
improvement over the context-insensitive method.

The way we handle context sensitivity is similar to previousapproaches which tag the interprocedural
dataflow values withcall strings. However, unlike some previous approaches which usek-limiting to handle
the potentially unlimited call strings in the presence of recursion[22, 16, 12], we combine the calling contexts

2or ”pointed-to-by” relation as in [20]
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for recursive calls as in [7].
The way we handle recursive data structures is not as preciseas the algorithms addressed in [16, 8, 9]. We

agree with Emami et al. [7] that the pointer analysis problemcan be divided into two distinct subproblems:
analyzing pointers to non-recursive data structures and analyzing pointers to recursive data structures. In this
paper, we focus on analyzing pointers to non-recursive datastructures. An improvement to our approach would
be to incorporate a more precise recursive data structure analysis algorithm. This is possible because our
hierarchical approach separates the analysis of recursivedata structures from the analysis of other pointer levels.

7 Conclusions

We have presented a hierarchical alias analysis approach which not only offers varying levels of context-
sensitivity but also enables the use of an efficient syntax-directed dataflow analysis technique. This hierarchical
approach is based on the observation that a dereference froma memory object with pointer leveln results in an
access to one or more memory objects with pointer leveln� 1. Thus, we postpone the analysis of the memory
objects for a certain pointer level until we have obtained the points-to information for all the higher pointer
level memory objects. This approach can be extended to analyze non-pointer variables.

An implementation of our approach can result in a spectrum ofcontext-sensitive alias analysis algorithms
with a context-insensitive algorithm on one end and a full context-sensitive algorithm on the other. Our exper-
imental results show that the precision improvement achieved by increasing the context-sensitive level of the
analysis varies significantly depending on the programs analyzed. Furthermore, increasing the maximum call-
chain length for a higher degree of context sensitivity may trigger an exponential complexity problem. Thus, it
is very important for an algorithm to allow users to select a prudent context-sensitive level which works best for
a particular program. By parameterizing the maximum call-chain length used in tagging the dataflow values,
our approach is able to provide this type of flexibility.
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